<i>C</i>*-module operators which satisfy the generalized Cauchy–Schwarz type inequality
نویسندگان
چکیده
Let L(H) denote the C∗-algebra of adjointable operators on a Hilbert C∗-module H. In this paper, we introduce generalized Cauchy–Schwarz inequality for in L(H). More precisely, an operator A∈L(H) is said to satisfy if there exists ν∈(0,1) such that ‖⟨Ax,y⟩‖≤(‖Ax‖‖y‖)ν(‖Ay‖‖x‖)1−ν(x,y∈H).We investigate various properties which inequality. particular, prove A satisfies has polar decomposition, then paranormal. addition, show equality holds inequality, cohyponormal. Among other things, when semi-hyponormal and only ‖⟨Ax,y⟩‖≤‖|A|1/2x‖‖|A|1/2y‖ all x,y∈H.
منابع مشابه
Generalized Baskakov-Szász type operators
Keywords: Baskakov-Szász operators Modulus of continuity Asymptotic formula Simultaneous approximation Statistical convergence Bounded variation a b s t r a c t In the present paper, we introduce generalized Baskakov-Szász type operators and study some approximation properties of these operators e.g., rate of convergence in ordinary and simultaneous approximation, statistical convergence and th...
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملGeneralized composition operators from logarithmic Bloch type spaces to Q_K type spaces
In this paper boundedness and compactness of generalized composition oper-ators from logarithmic Bloch type spaces to Q_K type spaces are investigated.
متن کاملChoi-Davis-Jensen's inequality and generalized inverses of linear operators
In this paper, some extensions of recent results on Choi-Davis-Jensen’s inequality due to Khosravi et al. [M. Khosravi, J.S. Aujla, S.S. Dragomir, and M.S. Moslehian. Refinements of ChoiDavis-Jensen’s inequality. Bulletin of Mathematical Analysis and Applications, 3:127–133, 2011.] and Fujii et al. [J.-I. Fujii, J. Pečarić, and Y. Seo. The Jensen inequality in an external formula. Journal of Ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear & Multilinear Algebra
سال: 2022
ISSN: ['0308-1087', '1026-7573', '1563-5139']
DOI: https://doi.org/10.1080/03081087.2022.2160862